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Abstract: We formulate and solve the analog of the universal Conformal Ward Identity
for the stress-energy tensor on a compact Riemann surface of gentisand present a
rigorous invariant formulation of the chiral sector in the induced two-dimensional gravity
on higher genus Riemann surfaces. Our construction of the action functional uses various
double complexes naturally associated with a Riemann surface, with computations that
are quite similar to descent calculations in BRST cohomology theory. We also provide an
interpretation of the action functional in terms of the geometry of different fiber spaces
over the Teichriller space of compact Riemann surfaces of ggnusl.

1. Introduction

Conformal symmetry in two dimensions, according to Belavin, Polyakov, and Zamolod-
chikov [8], is generated by the holomorphic and anti-holomorphic compoiiéntand

T(z) of the stress-energy tensor of a Conformal Field Theory. These components satisfy
the Operator Product Expansions [8, 15]
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wherec is the central charge of the CFT ardneans “up to the terms that are regular as

z — w”. These OPE, together with the regularity conditib(x) ~ 1/2* as|z| — oo,

are used to construct Verma modules for the Virasoro algebra that correspond to the
holomorphic and anti-holomorphic sectors of a CFT. The operator content of the CFT
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is specified by the highest weight vectors of the Virasoro algebra that correspond to the
primary fieldsO;(z, z) with conformal weightsi;, h;), satisfying

T(z)oz(w@rv( o, 1 8>ol(w,@7
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and similar OPE withT (2).

A CFT is determined by the complete set of correlation functions among the primary
fields, which are built up of conformal blocks: the correlation functions for the holo-
morphic sector. The conformal blocks are defined by the Conformal Ward Identities of
BPZ [8], which follow from the OPE for the primary fields. Introducing the generating
functional for then-point correlation functions
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where the integration goes over the complex plareedd®z = sdzAdz =dzAdy, z =
x+iy, z = x —1iy, the CWI can be written in the following “universal form” (cf. [31, 30])
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whered = 9/9z, o= 0/0z. Describing the complete solution of this equation, as well
as of its generalization for higher genus Riemann surfaces, is one of the major problems
of CFT.
This problem remains non-trivial even in the simplest case of conformal blocks
without primary fields, when the generating functioiid] ] takes the form

def

1
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It gives the expectation value of the unit operatiorthe presence of Schwinger’s source
term i, which is a characteristic feature of all CFT with the same central chaifjee
corresponding universal CWI reduces to the equation

ow c
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for the expectation value of the stress-energy tensor

def ow
ou(z)

It is remarkable that the function®l'[1], for |u| < 1, can be determined in closed
form and that it turns out to be the Euclidean version of Polyakov's action functional for
two-dimensional induced quantum gravity [26].

To see this, lefs be a Beltrami coefficient o€ — a bounded functiop with the
property|u| < 1 —to which one can associate a self-mappfngC — C as a unique
normalized (fixing 01 andoo) solution of the Beltrami equation

<T(z)>#
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Jz=uf:.
Denote by
_ _ e 3(f2)
o=t = 52 - 3(%)

the Schwarzian derivative ¢gf— “the stress-energy tensor associated WitlThen (see,
e.g. [22, 31]), Eq. (1.2) is equivalent to the following Cauchy-Riemann equation

5W _

with respect to the complex structure @hdefined by the coordinates = f(z, z),
¢ = f(z, 2). Using the regularity of the stress-energy tensaxatne gets that

oW
ou(z)

This variational equation for determinird@ was explicitly solved by Haba [18].
Specifically, letf** be the family of self-mappings dof associated to the Beltrami
coefficientsty,, 0 < t < 1. Then

1
C
W = tp 2
(1] 127r/odt/@1 pndz

solves (1.3). The functiond)” can be considered as a WZW type functional since its
definition requires an additional integration over a path in the field space.

Next, consider Polyakov’s action functional for two-dimensional induced quantum
gravity in the light-cone gauge [26], applied to the quasi-conformal fhap

SIf=— /@ ff (;) o (1.4)
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so thate S[f]/24r, considered as a functional of = f;/f., also solves Eq. 1.2.
Therefore, one has the fundamental relation

Wil = 5,-SI/1, (L5)

= (T 7T(2) (1.3)

It has the property

which expresse8/ as a local functional of and which can be verified directly. This
relation provides the interpretation (cf. [31, 7, 27]) of two-dimensional induced gravity
in the conformal gauge in terms of a gravitational WZNW model (and hence in terms
of a Chern-Simons functional as well).

In the present paper we formulate and solve the analog of Eq. (1.2) for the stress-
energy tensor on a compact Riemann surface of ggnud. As in the genus zero case,
it provides an invariant formulation of the chiral sector in two-dimensional induced
gravity on higher genus Riemann surfaces, a solution to the problem discussed in [30].
From a different point of view, this problem was also considered in [34, 35].

First, it should be noted that it is trivial to generalize the genus zero treatment to
the case of elliptic curves — compact Riemann surfaces of genus 1. Nametybet
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an elliptic curve realized as the quotiditC of the complex plan€ by the action of a
rank 2 latticeL generated by 1 angd, with Im7 > 0. The analog of Eq. (1.2) has the
same form, where is now a doubly-periodic function o@, while the corresponding
normalized solutiory of the Beltrami equation has the property

fE+1)=f()+1, [flz+7)=[f(z)+T,
wherer = f(r), Im 7 # 0. It follows that
foy=7of forallyelL,

wherey € L, the rank 2 lattice irC generated by 1 and. As a result, the functional
S[f] has the same form as in (1.4), where now the integration goes over the fundamental
parallelogram/T of the latticeL.

Having thus addressed the genus 1 case, we start by formulating Eq. (1.2) —the same
applies to the universal CWI as well — on a compact Riemann sufagiggenusy > 1.
In order to do it one needs to use projective connections ¢see, e.g., [17] for details).
Namely, recall [14] that the stress-energy tenBasf a CFT on a Riemann surface is
¢/12 times a projective connection. Therefore the expectation value

(T()) = ;5Q0),

is a holomorphic projective connection ghwhich depends on the particular CFT. The
difference between two projective connectionsXris a quadratic differential, so that
in order to define the generating functional for the stress-energy tensir one can
choose a “background” holomorphic projective connecfiband set

1 c
expl- 11} = (oxp{ -2 [ e DT - RO ).
T Jx
wherey is a Beltrami differential onX . The analog of Eq. (1.2) takes the form [6, 22]

oW
o (ftzzz + 2Ry + Rops),

wherez is a local complex coordinate alf, and was used in [34, 35]. As it follows

from the definition ofiV/,

ow _ _c
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and this expectation value can be set to zero if one cho@sesRk. However, when
working with all conformal field theories o having the same central charget is
preferrable to have a canonical choice of the holomorphic projective connéttione
possibility, which is the choice we will adopt in this paper, is to use a Fuchsian projective
connection. Itis defined by the Fuchsian uniformization of the Riemann susface by

its realization as a quotiedt\H of the upper half-planél by the action of a strictly
hyperbolic Fuchsian group with 2g generators. The upper half plane is isomorphic
to the universal cover ok, while I', as an abstract group, is isomorphicidX), the
fundamental group of the surfagé Note that the Fuchsian uniformization of Riemann
surfaces plays a fundamental role in the geometric approach to the two-dimensional
guantum gravity through quantum Liouville theory (see [29] and references therein).
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The coveringll — X allows to pull-back geometric objects framto H. Since the
Fuchsian projective connection tautologically vanishedlgithe stress-energy tensor
T(z) becomes a quadratic differential for the Fuchsian goup

Toy()?=T forallyeT,

whereas the source termbecomes a Beltrami differential fat,

/!

uo*yl/:,u forally € T.
v

The productl i is a (1 1)-tensor forT", so that the integral

/Tu dzAdz
F

—the natural pairing between quadratic and Beltrami differentials — is well-defined, i.e. it
does not depend on the choice of the fundamental dofanH of the Fuchsian group
. As aresult, the functiond/ [ 1] retains the same form as in formula (1.1), where now
the integration goes over the domdih and satisfies the same Eg. (1.2), witke H.
It should be noted that the expectation valugDfz)),, is no longer zero whep = 0,
but rather isc/12 times a holomorphic quadratic differentiglwhich is the pull-back
to H of the quadratic differentia) — R on X and characterizes a particular CFT. Thus,
as it was observed in [34, 35], the generating functional for the stress-energy tensor on
a higher genus Riemann surface is no longer a universal feature of all conformal field
theories with the same value afHowever, as we shall show in the paper, one can still
find the general solution of Eq. (1.2).

Next, in order to solve the universal CWI and to define an action functional for the
chiral sector in two-dimensional induced gravity &h one could first try to extend
Polyakov's functional (1.4) front to X by considering the following integral

1
5 [, (16)

M(ﬁ

where

w =
=5 \r
which was the correct choice for the genus 1 case. In this expressiofy/ f. should
be a Beltrami differential fol", which is necessary for an invariant definition of the
generating functiondl’[]. This imposes strong conditions on the possible choices of
the mappingf. It should be noted in the first place that, contrary to the genus zero case,
the correspondencé— u(f) = fz/f. is no longer one-to-one. Indeed, the solution of
the Beltrami equation

) dzAdz,

fe=uf-

onH depends on the extension of the Beltrami coefficietd the lower half-planél
of the complex plan€. There are two canonical choices compatible with the action of
T. In the first case

w2 T, zeH,
whereas in the second case
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u(z,E)dng, zcH.

In both cases, the property pfbeing a Beltrami differential foF is equivalent to the
following equivariance property of (the solution of the Beltrami equation@). There
should exist an isomorphisin> v — 74 € I' € PSL(2 C), such that

foy=qof forall~yeTl. a.7)

In the first case, the restriction ¢fto H yields a self-mapping dfl with I a Fuchsian
group (thus defining a Fuchsian deformatiorlf whereas in the second cagenaps
H onto the interior of a simple Jordan curveGrwith " a quasi-Fuchsian group (thus
defining a quasi-Fuchsian deformation[tf

However, using the equivariance property foft is easy to see that the “naive”
expression (1.6) can not be considered as a correct choice for the action functional in
higher genus. Indeed, it follows from (1.7) that:

1. The densityw[f] is not a (1 1)-tensor forl", so that the integral (1.6) depends on
any particular choice of the fundamental domain
2. The formal variation of (1.6) depends on the value§fobn the boundarg £ of F.

One may try to overcome these difficulties and resolve the second problem by adding
suitable “correction terms” to the functional (1.6); these can be determined by performing
the formal variation of (1.6). Specifically, all local computations will be the same as in
the genus zero case (see Lemma 2.6), except that now (1.7) does not allow to get rid of
the boundary terms in the Stokes formula by setting the variatipre d f to zero on

OF. Therefore, besides the local “bulk” term, the variation of (1.6) will contain “total
derivative” terms localized alF'. This suggests the addition of “counterterms”, which
depend only on the edges &f, such that their variation cancels the boundary terms
coming from the variation of (1.6). Such counterterms can be determined; it should
be noted that a similar, though much simpler procedure was used in [33], where the
Liouville action functional on the fundamental domain of a Schottky group was defined.
In our case, however, the actual construction goes one step further: the variation of the
edge terms produces additional quantities localized at the vertiéeg.dh turn, their
cancellation requires counterterms that depend on the vertic8%' pivhich can be
determined as well.

It turns out that this rather complicated procedure, which solves problem 2, can be
carried out in a canonical way using standard tools from homological algebra, namely
various double complexes naturally associated with the Riemann suifatteis re-
markable that at the same time it solves problem 1 as well!

By using the action of the groupp on H, we extend the singular chain boundary
differential and the de Rham differential &into act on chains and cochains for the group
homology and cohomology df. The corresponding group boundary and coboundary
differentials give rise to two double complexes such that the fundamental ddmain
and the density[ f] can be extended to representatives of suitable homology and co-
homology classes)] and [©2¢] and the pairing between them beconiesvariant.
Subsequently, we define the action functio6pf] as the result of such pairing, i.e. as
the evaluation of @¢] on [¥]. Quite naturally, the actual computation of these repre-
sentatives goes exactly like descent calculations, familiar from BRST cohomology (see,
e.g. [20]). This is more than a simple analogy in the following sense. The appropriate
tool for linearizing the action of a discrete group is the group ring, which leads to the
group (co)homology that we are using for the action of the Fuchsian graud. The
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corresponding concept in the case of a continuous (Lie) group is the Lie algebra and its
(co)homology, which is used in BRST theory.
The action functionab[ f] resulting from this construction looks as follows. Lt
be a canonical fundamental domain foin the form of a closed non-Euclidean polygon
in Hwith 4g edges. For any € I" and any pair{1,v,) € I' x T, letd,[ fland©,, .,[ f]
be a 1-form and a function dH given by the following explicit expressions:

1

6.,-1[f]1=10g(3' o f)dlog f. — log(f. o 7)dlog~’ — 277,ud z
d6, 1 [f1= 7 (Iog(71 ©72) dlog53) +log; dlog(r1 o 72)’
1 - 1
—5f (d(log#3)?) — > d(logm)?,

where f* denotes the pull-back of differential forms tihby the mappingf. Then

g g
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Herea; andb; are the standard cycles df viewed as edges af with initial points
a;(0) andb;(0), «; and; are the corresponding generators of the grbugnd-y; stands

for the commutatords;, 3;] %' aqifio; 67

Observe that one can formally sgt= 1 in the representation (1.8), replacing the
non-abelian group§ andI" by the latticesL and L, respectively. Since in this case
~" = 4" = lidentically, the differential form& andd © vanish and the action functional
S[f]is given by the bulk term only.

It is also instructive to compare our construction with that presented in [34, 35].
Namely, in [34, 35] a solution of (1.2) was written directly on a higher genus Riemann
surface equipped with additional algebro-geometric and/or dissection data. Formally,
this solution also features a bulk term derived from the genus zero Polyakov action plus
contributions of lower degree, but a rather complicated series of prescriptions is involved
in its definition. In our construction, the functiong{l /] is written down on the universal
coverH and it only depends on the choice of the normalized solufiofthe Beltrami
equation orHl. As a result, it enjoys the same nice variational properties as in the genus
zero case. Specifically, we summarize our main results as follows.

Theorem A. The functionalS[ f] does not depend on either the choice of the funda-
mental domairt”, or the choice of standard generators for the Fuchsian grbulh has
a geometrical interpretation as a result of the evaluation map given by the canonical
pairing

H?(X,C) x Ho(X,Z) — C,

wherew[ f] — 0[f] — ©[f] represents an element ii?(X, C) depending orf and F
is canonically extended to a representative of the fundamental classrofi, (X, Z).
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Since the action functiond[ f] is independent of all the choices made, the cor-
responding variational problem is well-defined. We shall consider two versions of it,
depending on whether we choose either f, related through the Beltrami equation, to
be the independent functional variable. In the first case, the independent variable belongs
to the linear space of Beltrami differentials fbrand the “source” Fuchsian group
uniquely determines the “target” Fuchsian (or quasi-Fuchsian) groapf o' o f~1
through the solution of the Beltrami equation (“variation with free endpoint”). In the
second case, the “target” grolipand the homomorphisi — T are fixed a priori
(“variation with fixed endpoints”) and the independent varighiga self-mapping ofl
(or amapping oH onto the interior of a simple Jordan curve) satisfying the equivariance
property (1.7). In both cases it is guaranteed that the boundary terms arising from (1.6)
are taken care of by the counterterms in (1.8), so that we have

Theorem B. The variation of the actiors[ f] with respect tou or f is given by the
formulas

dS[f]1=2 /F T(z) 61u(2) d=

and

of
f=

2
d°z,

5S[f1= —2 /F fass

respectively.

Needless to say, the variational derivativesSgf] — the quantities'(z) and .,

— are, respectively, () and (21)-tensors fol” (see Lemma 4.2) and can be therefore
pushed down to the Riemann surfake~ I'\H.

Note that the critical points of the function&][ /], considered for the mapping/s
that intertwine a given Fuchsian grolipand a Fuchsian (or quasi-Fuchsian) grayp
consist of those mapp such that the corresponding= fz/f. satisfies the “equation
of motion”

Hzzz =0. (19)

For a given paifl’, I", determining the critical set [ f] seems to be a very difficult
problem. However, itis rather easy to find the dimension of the solution space of Eq. (1.9)
without imposing any conditions on the target grdup f o I' o f~1. We shall show in
Sect. 4, using the Riemann-Roch theorem, that this dimension is actgaH\d4

Critical points of the functiona$[ f] with respect to the variation with free endpoint
satisfy the equation of motidfi(z) = 0. They are a subset of the previous “fixed-end”
critical set (cf. Lemma 2.3 and Proposition 5.2). Again, determining this set seems to
be a non simple task.

As in the genus zero case, it follows from Theorem B th8ff]/24r, considered
as a functional ofx = fz/f., solves Eg. (1.2), and is a solution local in the map
f. However, in the higher genus case the correspondgnee f is no longer one-
to-one and, at least, there are two canonical choiceg fmoducing a Fuchsian or a
quasi-Fuchsian deformation of the Fuchsian grbuBoth the functionals S[ f]/24r
corresponding to these mappings solve Eqg. (1.2). We shall show in Sect. 4.2.2 that the
difference of the corresponding stress-energy tensors is a quadratic differential for
which is holomorphic with respect to the complex structureXdmetermined by the
Fuchsian and the quasi-Fuchsian deformatiors. of

As we already mentioned, in genus zero it is possible to express the solution of (1.3)
by integrating along a linear path in the space of Beltrami coefficients. Actually, as we
show in 2.2, any path(t) that connectg to O leads to the same functional. In the higher
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genus case, we denote If§(*) the corresponding solutions of the Beltrami equation on
H producing either a Fuchsian or a quasi-Fuchsian deformatibh @épending on the
given terminal mapping, and set

T'(2) = {f*®, 2}

According to Lemma 4.2, the definition

W] dé‘fl;r/ol(/XTtp(t) d2z>dt, (1.10)

whereu(t) = du(t)/dt, makes perfect sense since the integrand in (1.10), being a product
of a Beltrami and a quadratic differential fbr is a (1, 1)-tensor fol". We have

Theorem C. (i) Let f be eitheraFuchsian ora quasi-Fuchsian solution of the Beltrami
equation oritl. Then

Wil = 5,51,

so that the functiondlV[ 1] does not depend on the choice of the homoidpyand

- ¢ 2
oW = Ton /X T(2)0u(z)d = .

(i) The functionalWW[u] is a holomorphic functional of in the quasi-Fuchsian case,
while in the Fuchsian case

PWep] - ¢ 2, -2 2
Dede 6:0“487T/F'“'y @z,

for Bers harmonic Beltrami differentiajs.

It is worth stressing again th&t’, as defined in (1.10), is but one possible solution
to the universal CWI onX: we have already noted that the solution corresponding to
a given CFT with central charge may differ from (1.10) by a term involving &-
guadratic differential, which is the expectation value of the stress-energy tensor of that
CFT. (Similar observations about the lack of uniqueness in the solution to the CWI due to
holomorphic quadratic differentials appear in [34, 35].) Moreover, the fact that in higher
genus the correspondenge— f ceases to be one-to-one clearly affects the value of
(1.10), which will depend on the prescription used to solve the Beltrami equation. These
observations lead to the question of what features of conformal field theories at central
chargec are actually conveyed by (1.10). Since, according to Theorem C, the solution
of (1.10) featuring a quasi-Fuchsian deformation depends holomorphically ibis
therefore natural to conjecture that the corresponding functiéiial (or (c/24r)S[ f1,
through Theorem C) represents a universal feature of all conformal field theories with
central charge.

We also observe that (1.10) can be considered as a WZW type functional, since itis
obtained integrating over a path in the field space. Theorem C says that this term has also
a local representation in two dimensions. This parallels the genus zero situation, where
the Polyakov’s action in the light cone gauge can be actually derived from a WZNW
model [2]. (See also [31, 32] for the analogous situation in the conformal gauge.) In
that case, one obtains a local functional in two dimensions as a consequence of the
topological triviality of the WZW term for the group S(R).
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1.1. The organization of this paper is as follows. In Sect. 2 we present a consistent
formulation of the two-dimensional induced gravity in the conformal gauge using quasi-
conformal (even smooth) mappings ©@fand without using any analytic continuation
from the light-cone gauge or treatingandz as independent variables. There we gather

all results, based on local computations, that will be used in the subsequent sections.
Needless to say, essentially all these results are known (see [18, 26, 31, 32]) and we
present them mainly for the convenience of the reader and in order to make the paper
self-contained. We also discuss in detail the formulation based on the fundticipdl

from [18], prove that it coincides with the Polyakov's action functional (which was
implicitly contained in [31]) and compute the Hessians of the action functidsigls

andW ).

We start Sect. 3 by briefly discussing the genus 1 case. Next, we recall the standard
concepts from homological algebra and differential topology that are needed to treat the
case of higher genus Riemann surfaces, relegating the proofs of some rather technical
results to the appendix. We then present the explicit construction of the representatives
of the fundamental class] and the cohomology clas€2] corresponding to the
fundamental domai@’ and the density| f], respectively.

In Sect. 4 we finally define an analog of the Polyakov’s action functional for the
Riemann surfac& of genusg > 1 and prove Theorems A, B and C. We also prove
that the solution space of the equatjan . = 0 is 49 — 3-dimensional and compute the
Hessians of the action functionad§ f] and W [u].

The relation of the constructions presented in Sects. 3 and 4 with the geometry of
various fiber spaces over the Teichlier space is analyzed in Sect. 5. There we describe
exp(—W{u]) as a section of a line bundle over Teictlher space, making contact with
previous work on the subject. In the last subsection we draw our conclusions and set
some directions for future work.

2. Generating Functional and Polyakov’s Action in Genus Zero

2.1. Let f be a normalized self-mapping of the complex pl&h&.e. an orientation
preserving diffeomorphism of the Riemann sphete= C U {oo} fixing 0, 1, co. Define
amapf — p = u(f) = fz/f., wherepn is a smooth Beltrami coefficient o@: a
smooth bounded function such that < 1. The following basic result of the theory
of quasi-conformal mappings guarantees that the correspondence is one-to-one
and onto.

Proposition 2.1. Lety € L*°(C) (the Banach space of measurable functions with finite
supnorm) such thaf|u||. < 1. Then the Beltrami equation

fz=nf- (2.1)

has a unique solutiofifixing0, 1, co which is an orientation preserving quasi-conformal
homeomorphism @. The solution is smooth (real-analytic) whenenés smooth (real-
analytic).

Proof. See[1]. O

Letw[ f] be the following (1 1)-form
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Sz
Iz

which (see the introduction) we identify as the density of Polyakov’s action functional.
Here and elsewhere it is understood that ;.(f). From now on we also assume that
f(z,2) — z — 0 as|z| — oo in such a way that the (1)-formw[ f] is integrable on

C. (One can simply consider with finite support; other less restrictive conditions for
the differencef(z, z) — z can be formulated in terms of Sobolev spaces.) Define the
functional F

st=5 [etn=- [ %

Remark 2.2.The functionalS[ f] is the Euclidean version of Polyakov’s action func-
tional for the two-dimensional quantum gravity in the light-cone gauge [26]. Letusrecall
that it can be also formally obtained (cf. [30]) as a “chiral” version of the Liouville action

wlfl= —p.dzAdz, (2.2)

. d?z. (2.3)

A= 5 [ VRO0.00,0+ 0 B,

(wherezx; = x, z» = y and Ry, is the curvature of the background methig; in the
following way. Consider the “metrich = (dz+pd z)®d z, 1 = p(f) and setp = log f,.
SinceRy, = 2u.,, the integrand iM[¢] is equal to

1 zz zz
¢z¢2+2/j/(_§¢§+¢zz):_§ ll/z+2(/,tl]; ) .

LetT = {f, z} be the Schwarzian derivative of the mappjhdVe have the following
identity, which could also be looked at as an “equation for the trace anomaly” [26, 32].

Lemma 2.3. _
(a - Ma - zﬂz)T = Hzzz -

Proof. A direct computation using the definitions@and of the Schwarzian derivative.
(I

Lemma 2.4. The functionalS[ f] is smooth in the sense that its variational derivative
d5/0u(z), defined as

S(u+t6u)=/§£5ud22
c O

dt,—o
exists and is given by
)
=2T(2).
su 1)
Proof. Starting with the formula
6fz_ (sfz
o = - , 2.4
WE S THT (2.4)

that relates the variations pfand f, we get by a straightforward computation

ow = {(‘j{) Mz+‘§fz6uz}dz/\dz_= —2TépdzAdz—dn,  (25)
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where

n[f-(s,f]: <fzz($fz_+,ufz(sfz o <fzz> M>dz fzz fz Z_ 0

Iz [ [ f?

Proposition 2.5. The functionat S[ f]/24r is the unique solution of the universal CWI
for the stress-energy tensor.

Proof. It follows immediately from Lemmas 2.3 and 2.4 th&{ f]/24r, considered as
a functional ofu, satisfies Eq. (1.2)

ow c
2 .
@ — 40 — 22)~——~ i) 1zne
To prove uniqueness, consider the difference
ow c

QU= = ( >(fz) :

and observe (cf. [22, 31]) that it satisfies the following equation

@ — ud)QLul(2) = 0,

which shows tha®[ ](z, z) is holomorphic with respect to the new complex structure
¢ = f(z, 2), ¢ = f(z, z) onC defined by the Cauchy-Riemann operatery. &. Recalling
thatdW/du(z), as wellag'(z), vanish a$z| — oo (regularity of the stress-energy tensor
atoo) we conclude thaf)[ 4] is an entire function of vanishing at, so that)[u] = 0
Therefore, the functional

ou(z) 24m 6,u(z)

¢ fzz

c 2
Es[f] — 5 podz

solves the universal CWI (1.2) d#t. O

Next, we determine the variation Sfwith respect tof and determine the classical
equations of motion: the critical poindS[ f] = 0 of the functionalS.

Lemma 2.6.

0 )
551 = —2/C<T;—uTz —2MZT)f—f dzz:—z/cuzzzf

z

d?z,
so that the classical equation of motion is
Hzzz =0.

Proof. It follows from the identity

TépdzNdz=(-Tz+puT, +2uzT)ﬁ —d7',

where

n’=ngz+uTﬁdz_,

and from Lemma 2.3. O
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2.2. Letpu(t), 0 <t <1, bethe path in the space of Beltrami coefficients connecting
0 with the given Beltrami coefficient. It gives rise to a homotopy* = f#®, #° = id,

ft = f that consists of normalized quasi-conformal mappings satisfying the Beltrami
equation

fe=n®f:.

Denoting the corresponding Schwarzian§ag) = { f?, 2}, sothatf® = 0 andr™ = T,
we have the following useful variational formulas.

Lemma 2.7.
(()z2z = (0 — plt) D — 2 (1) )T, @)
OT" = (P +2T" 9+ TH(u), (ii)
() = (0 — plt) O + ult)-) (), (iii)

whereu! = §ft/ fL.

Proof. Equation (i) is just a restatement of Lemma 2.3, applied to the fitaghe
variational formula (ii) is verified by a straightforward (though lengthy) computation
usingT" = { f, z} and the definition of the Schwarzian derivative. Finally, Eq. (iii) follows
from the variational formula (2.4), written as

= )
n=0-no+u)(T)
and specialized to the maf. O

As it follows from Lemma 2.7, the differential operators
T=0%+2T0+T,

and _
M=0—pud+pu,

play a fundamental role in the variational theory. In particular, the third-order differential
operatorZ appears in many other different areas as well. It serves as a Jacobi operator
for the second Poisson structure for the KdV equation [24] that is given by the Virasoro
algebra and it plays an important role in Eichler conomology on Riemann surfaces [17].
The operatoff is skew-symmetricJ ™ = —7, with respect to the inner product given

by
5 - 9 2.6
(u U) / uv d z ( )

whereasM™ = —D, whereD EH_ ud — 2u.,. However, we have the following result.

Lemma 2.8. The operator/ M is symmetric.
Proof. It reduces to the verification of the identity (\)™ = DT, or
(0P +2T O+ T.) 0 — pd+p2) = (0 — pd+2u)(@°+ 2T 9+ 1),

which immediately follows from Lemma 2.3 affd= {f, z}. O
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Now, let us introduce the functional

1
qu:ié;A‘AJ“M0d%dt 2.7)

where the dot stands fel/dt. A priori it may depend on the choice of the homotopy
u(t). The following result shows that the variational derivativelifwith respect to
1 = (1) does not depend qixt).
Lemma 2.9. SW
C
=—T(2).
ou() 1z @

Proof. Writing 8(T[u(t)) = 6T u(t) + Tt81(t) and using (i) in Lemma 2.7, together
with the relation

fu(t) = M'(0"), (2.8)
(wherev! = f*/ ) which follows from formula (iii) of Lemma 2.7 applied ®= d/dt,
we get ]
0T u(t) = THuH) M ().
Using Lemma 2.8, Egs. (2.8), (iii) and the equation
T =T'("),
which follows from formula (ii) of Lemma 2.7 applied ®= d/dt, we obtain
/ 8T* ju(t) o = = (T (u"), M' (")) = —(u", T" M'(v"))
C
= (', (M) T' (") = (M (), T"(v"))
= / Sut)Tt d? = .
C

Substituting this into the expression @i/, we get

1 .
(A@%@+WMWdFTW@MkTM,

which completes the proof. O

Moreover, as the next result shows, the functidiails actually independent of the
choice of the pat(¢) connecting the points 0 andn the space of Beltrami coefficients.

Proposition 2.10.
C

Wikl = 5,
wheref andyp are related throughu = fz/f..

S[/1,

Proof. Itis essentially the computation in Lemma 2.4, done in the reverse order. Namely,
considering the families(t) and f*® and using the formula (2.5) for the case d/dt,

we get
t

20z na7= § (Leu.00 naz) sants o,

which after integrating ovet x [0, 1] yields the result.
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2.3. Here we compute the Hessian of the functiofipf], i.e. its second variation with
respect tof, evaluated at the critical point. Lét f andd,f be two variations off,
defined through the two-parameter famfly; with foo = f as

AR RIS A
The second variation [ f] is
&S[f1= LZS[fs ¢l ;
dsdt " s=t=0

and it can be computed using the first variatior5¢f] from Lemma 2.6

5.50f]= 2 /C v ‘S;J 2

by evaluatingd,(i....[ /1) As it follows from Lemma 2.7,

8o(p=e=L11) = (90 M) (‘fo ) , 2.9
so that
8 SIFALf,62f) = —2 5;f (6% 0 M) (‘iff ) o (2.10)
C z z

The Hessian is symmetric, so that the right hand side of (2.10) should be a symmetric
bilinear form ind1 f, - f whenevern.. .. = 0. This can be verified directly, as we have

Lemma 2.11. The operatord® o M for p... = 0 is symmetric with respect to the
bilinear form (2.6).

Proof. Using (%)™ = —9° we have
(PoM) =Dod?,

whereD = 9 — ud — 24, and it is straightforward to verify the following identity
wheny, ., =0:
PoM=Dod*. O

Similarly, one can compute the Hessian of the functidiigl]. We have

Lemma 2.12.
B W(Gun, 02 = 15 [ 83u(0° 0 M) o)
T Jc

Remark 2.13.Since

[ [

the operatorM is invertible on the subspace of smooth function€ovanishing ato.

M(“"f) =L WP @uyor, (2.11)
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3. Algebraic and Topological Constructions

3.1. Here we consider the genus 1 case. Kebe an elliptic curve, i.e. a compact
Riemann surface of genus 1, realized as the quofiers¥ L\C, whereL is a rank 2
lattice inC, generated by the translation§:) = z+1 andg(z) = z+7, where Imr > 0.
Let 1. be a Beltrami coefficient foE, i.e. al|u||- < 1 function onC satisfying

poy=p forallye L,

and letf = f# be the normalized (fixing,d, co) solution of the Beltrami equation on

C
fz=nuf-.

Itis easy to see thato L = L o f, whereL is the rank 2 lattice it generated by 1 and
7 = f(r). Indeed;y'= f oy o f~Lis a parabolic element in PSL(@) fixing oo, i.e. a
translationz — z + h, and it follows from the normalization thgt(z + 1) = f(z) + 1.
Therefore the (11)-formw[ f] on C is well-defined onX so that the action functional
takes the form

1
St1= 5 [ <],
L
wherell is the fundamental parallelogram for the lattice

3.2. Here we consider the higher genus case and construct double complexes that
extend the singular chain and the de Rham complexék.dife extend the fundamental
domainF for I" and the (11)-formw[ f] on H to representatives of the homology and
cohomology classes]] and [2¢] for these double complexes.

3.2.1. Let X ¥ I'\H be a compact Riemann surface of gegus- 1, realized as
the quotient of the upper half-plari& by the action of a strictly hyperbolic Fuchsian
groupT'. Recall that the group’ is called marked if there is a chosen system, up to
inner automorphism, of2free generatoras, ..., a4, f1, . . ., B, satisfying the single

relation
[ag, B1] -+ [ayg, Bg] = 1, (3.1)

where [, 5] def i 167t and 1 is the unit element ifi. For every choice of the
marking there is a standard choice of a fundamental domainH for I" as a closed non-
Euclidean polygon withdedges, pairwise identified by suitable group elements. We will
use the following normalization (see, e.g., [19] and Fig. 1). The edgésané labelled

by a;,a;, b;, b, ande;(al) = a;, B (b)) = b; foralli = 1,...,g; the orientation of the
edges is chosen so thaf’ = >~7_, (a; +b; — a}, — b;). Also we seBla; = a;(1)—a;(0) and

0b; = b;(1)—b;(0), wherethe label “1” represents the end pointand the label “0” the initial
point with respect to the edge’s orientation. One has the following relations between the
vertices ofF” and the generators; (0) = b;+1(0), o; (a:(0)) = bi(1), 8, *(b:(0)) = as(1)

and [o, 5;](b:(0)) = b;,_1(0), where, in accordance with (3.1)(0) = b,(0).

3.2.2. Let u be a Beltrami differential for the Fuchsian grobpi.e. a bounded(*>° (H))
function onH satisfying

poy— =u forallyeTl.

2=
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Fig. 1. Conventions for the fundamental domdin

In addition, it is called a Beltrami coefficient férwhen||u|| < 1. Denote byf = f#
the normalized (fixing 0L andoo) solution of the Beltrami equation di

f??:ufz-

As itwas already explained in the introduction, we consjtierbe either a self-mapping

of H, or a mapping ofH onto the interior of a simple Jordan curve @ uniquely
determined by:. These two choices can be realized by considering the Beltrami equation
on the whole complex plar@: in the former case the Beltrami coefficignis extended

to the lower half-planél by reflecting it through the real ling, while in the latter is
extended by zero ifil. In both cases there exidtsc PSL(2 C), isomorphic tol" as an
abstract group and such thatntertwines betweelr andI’

foy=7of forallyeTl,

which actually defines the isomorphistn— 5. In the first case we have that ¢

PSL(2 R) and itis in fact a Fuchsian group, a Fuchsian deformatidn & the second
casd’ is a so-called quasi-Fuchsian group, a special case of a Kleinian group. Its domain
of discontinuity has two invariant components, the interior and the exterior of a simple
Jordan curve irC, which is the image of the real lin@ under the mapping and is

a limit set forI". These mappings, introduced and studied by Ahlfors and Bers, play a
fundamental role in Teichiiller theory (see, e.g. [16]).

3.2.3.LetS, = S.(Xp) be the standard singular chain comple¥o#ith the differential
0. (From now on, we will denote the singular chain differential®yas the symbaod
will be reserved for the total differential in a double complex, to be introduced below.)
The groupl™ acts onH and induces a left action @, by translating the chains, hence
S. becomes a complex df-modules. Since the action ®f on H is proper,S, is a
complex of leftfree ZI'-modules [23], wher&l is the integral group ring df': the set
of finite combinations __ .- n, with coefficientsn,, € Z.

LetB, = B.(ZI") be the canonical “bar” resolution complex féywith differential
9".EachB, (ZT)is afree leff"-module on generators{] . . . |, ], with the differential
0" : B, — B,,_1given by

n—1

"l =l - Il + 2oim (1 [l - - i visal - - )
+(=1)"[] .. [yn-1]
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for n > 1 and by
"M =~11-11]

for n = 1. Here }]. .. |v,] is defined to be zero if any of the group elements inside
[...] equals the unit element 1 in. Bo(ZI") is aZI'-module on one generator [ ], and
can be identified wittZT" under the isomorphism that sends [ ] to 1.

Next, consider the double compl&x . = S, ®zr B,. The associated total simple
complex ToK is equipped with the total differentiagl = 0’ + (—1)?9” on K, ,. For
the sake of future reference, we observe thats identified withS, ®zr Bo under the
correspondence— c® [ ].

Remark 3.1.SinceS, andB, are both complexes of left-modules, in order to define
their tensor product ovéiI" we need to endow ea&), with a rightl’-module structure.

This is done in the standard fashion by settingy &t 7 Y(c). As aresultS @z B =
(S Rz B) , So that the tensor product over integral group rin@ @an be obtained as
the set off-invariants in the usual tensor product (o¥gras abelian groups [9].

The application of standard spectral sequence machinery, together with the trivial
fact thatH is acyclic, leads to the following lemma, whose formal proof immediately
follows, for example, from [23], Theorem XI.7.1 and Corollary XI.7.2.

Lemma 3.2. There are isomorphisms

HJ(X,7Z) ¥ Ho([',Z) ¥ H.(TotK, ),
where the three homologies are the singular homology pfthe group homology df
and the homology of the compl&atK, , with respect to the total differential.

We will use this lemma in the construction of the explicit cyélein TotK that
extends the fundamental domaih For the convenience of the reader we present a
simple minded proof of Lemma 3.2 in Appendix A.

3.2.4. We now turn to constructions dual to those in 3. DenoteA\by= A?(X,) the
complexified de Rham complex difi. EachA™ is a left -module with the pull-back

action of T, i.e.v - ¢ &t (y"1*¢ for ¢ € A® and for ally € I'. Consider the double
complexCP¢ = Hom(B,, A?) with differentialsd, the usual de Rham differential, and
6 = (0")*, the group coboundary. Specifically, fore C?:,

=1
1)y -

As usual, the total differential 0@ is D = d+(—1)"4. Either by dualizing Lemma 3.2
or working out the spectral sequences resulting fre obtain the

Lemma 3.3. There are isomorphisms
H*(X,C)= H*(I',C) = H*(TotC**),

where the three cohomologies are the de Rham cohomolagytbe group cohomology
of I and the cohomology of the compieat C*:* with respect to the total differentidb.
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As for Lemma 3.2, a simpler proof can also be found in Appendix A.
Finally, there exists a natural pairing betwegh? andK, , which assigns to the
pair (¢, ¢ ® [11]. .. |74]) the evaluation of the form.,, .. ,, over a cycler,

G.c® .. ) = / Doz (32)

By the very construction of the double complexés® andK, ., the total differentials
D andd are transpose to each other

(D®,C) = (D,dC) (3.3)

forall ® € C**, C € K, ,. Therefore the pairing (3.2) descends to the corresponding
homology and cohomology groups and is non degenerate. It defines a pairing between
H*(TotC*-*) andH,(TotK, ,) which we continue to denote ki, ).

3.3. Here we compute explicit representativeandQ, for the fundamental class of
the surfaceX and a degree two cohomology class Erthat extend the fundamental
domainF' and the 2-formu| f], respectively.

3.3.1. Homology computationEix the marking of” and choose a fundamental domain
F as in 3. We start by the observation tha& F'®[] € Kz 0. Furthermore, obviously
9"F =0, and

g
O'F =) (b — b — ) +aj)
=1

= S ) — b — o) ),
=1

which we can rewrite a8’ F' = 0" L, whereL € Ky ; is given by

g
L= (b @8] —a: ®[e]). (3.4)

=1

This follows fromy=Y(c) —c=c-y—c=c®7[] —c®[] = c® d"[7] for any singular
chainc and anyy € T'.

Let us now computé’ L. There existd” € Ko, such that’'L = 9"V, its explicit
expression is given by

9
V= Z (a:(0) ® [ B:] — b:(0) @ [Bilai] + b:(0) @ [, HewiBil)
=1

; (3.5)

=

by ® [, t. vzl ',
=1

where [v;, 5;] = v;. Indeed, a straightforward computation, using the relations between
generators and vertices, yields

IL=0"V-b,0) @[, " .7,
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and the second term in the RHS vanishes by virtue of (3.1), since [1] = 0.
From the relation®’F' = §"L andd'L = 9"V it follows immediately that the
elementy = F'+ L — V of total degree two is a cycle in Tdk, that is

OF+L—-V)=0.
Thus we have the

Proposition 3.4. The cycleX € (Tot K), represents the fundamental class of the sur-
face inH,(X, 7).

Proof. This follows immediately from Lemma 3.2, provided the clas§ {s not zero,
but this is not the case, since the cyéleis a “ladder” starting from the fundamental
domain F. It follows from the arguments in Appendix A that the latter in fact maps
underS; > FF— F®R1e S, ®zr Z = S5(X) to a representative of the fundamental
class. O

Remark 3.5.The existence of the elementsandV can be guaranteed a priori by the
methods of Appendix A, using the fact tHahas no cohomology except in degree zero.

As it follows from Proposition 3.4, the homology clasS][is independent of the
marking of the Fuchsian group and of the choice of the fundamental domdin
whereas its representative is not. Since this independence is a key issue in defining
the action functional for the higher genus case, we will show explicitly that different
choices lead to homologous. Essentially, these choices are the following.

— Within the same marking choose another set of canonical genecgtgisby con-
jugating «;, 3; with v € T so thatF’ = ~F for the corresponding fundamental
domains.

— Within the same marking make a different choice of the fundamental doffain
(which is always assumed to be closedHi)) not necessarily equal to the canonical
44 polygonF'.

— Consider a different marking;, 8. and a fundamental domaff for it.

Clearly, all the previous cases amount to an arbitary choice of the fundamental domain
for I'. However, if ' and F’ are two such choices, then there exist a suitable set of
indices{v}, elementsy, € I' and singular two-chains, such that

F'=F=) (3,%)-a). (3.6)
Itfollows, for instance, from the fact that the chain complextios a freel™-module [23].

Then we have the following

Lemma 3.6. If ' and F’ are two choices of the fundamental domain foin H, then
[X] = [X"] for the corresponding classes Hf, (TOtK, ).

Proof. Let ¥ = F+ L —V andX’ = F' + L' — V' be the cycles in T& constructed
according to the method of 3.3.1. It follows from (3.6) that

F —F:@”(ch ®[w]),

and therefore
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F'+L'=F—-L=0(> c @[l
+(L' =L =Y ) @[wl).

The second term in these expression is an elemeldt pind its second differential is

"L =L =Y d)@n])=0'F - F) =Y (1,%0') - ()
=0.

Since the higher homology @f with values inS, is zero (cf. Appendix A), there exists
an element’ € Ky, such that

L-L-Y ) ol =0"C,

so that
S -2=00) c®[w]-C)-V'+V+dC.

Similarily, 0”"(V' — V — 9’C) = 0, and therefore there exists € Koz such that
VI —V+9'C=9"K.Finally,

-2=00> a®n]l-C-K),

since, obviouslyy’ K = 0. O
3.3.2. Cohomology computatiortdere we pass to the dual computations in cohomology.
Let
fzz
wlf1=
P

be the density of Polyakov’s action functional in the genus zero case, wherg/ f..
Obviously,w[ f] can be considered as an elemenEfP, that is a two-form valued zero
cochain ol". Then there exist elemengf] € C1* andO[f] € C%2 such that

dw[f1=d0[f] and 60[f]=dO[f],

p-dzAdz,

so that thef-dependent cochaif® = w[f] — 0[f] — ©[f] of total degree two is a
cocycle in TotC, that is

D(wlfl -0lf1-0[f)=0.

Indeed,dow[f] = ddw[f] = O becausev[f] is a top form onH, and sinceH is
contractible, it follows that there exis# f] such thatow[f] = dé[f]. Similarly,
dob[f] = 6dO[f] = déw[f] = 0 and again, sinckl is acyclic, there exist®[ f] such
thatéd[ /] = d ©[ f]. Continuing along this way, we gdtb©[ f] = 0, so thathO[ f] is a
3-cocycle on” with constant values. As it follows from Lemma 383(I", C) = {0},

so that, shifting®[ f] by a C-valued group cochain, if necessary, one can choose the
“integration constants” in the equatid®[ f] = 40[ f] in such a way that @[ f] = 0.
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Itis quite remarkable that explicit expressionsdpf] and©[ f] can be obtained by
performing a straightforward calculation. Indeed, using

bV
foy=%of and uov% = W,
we get

Swy[f1= wlfl oy O P = wlf1=do,[f1. (3.7)
A direct computation, using the property tHat, z} = 0 for all fractional linear trans-
formations, verifies that

1"

0.-1[f]=log(¥ o f)dlog f. — log(f. o 7)dlog~’ — Z%Mdg (3.8)

Proceeding along the same lines one can work out an expressiéh fairin order to
get a manageable formula, it is more convenient to write down its differential

46, [f1= f(1og(51 0 52) " dlog ;) +log; dlog(v1 o 72)’

1., 2 1 2 (3.9)
— 5/7(d(log#5)") — 5d(log3)”.
Itis easy to verify that the right hand side of this expression is indeed a closed one-form
onH and, therefore, is exact.

Remark 3.7.0ne can obtain a formula fa®[f] by integrating (3.9). The resulting
expression will involve combinations of logarithms and dilogarithms, resulting from the
typical integral

/ log~'dlogo’,

wherey ando are fractional linear transformations. The customary choice in defining
this integral is to put branch-cuts fromoo to y~1(c0) and fromo—(c0) to co. When
these elements belong to the Fuchsian grbughe branch-cuts should go along the
real axisR which is the limit set ofl". The same applies to the target gratpvhen

the mappingf defines a Fuchsian deformation. If the target grbupg quasi-Fuchsian,
the branch-cuts should go along the limit sefipfthe simple Jordan curve that is the
image ofR under the mapping. With this normalization@7;177;1(f) is defined up

to the “integration constanti’vglﬁfl which are determined from the condition that

dO0[f]=0.

Therefore we proved, in complete analogy with the homological computation, that
the cochair; = w[f] — 0[f] — O[f] € (TotC)?is in fact a cocycle,

DQf =0.
Hence, from Lemma 3.3, we have

Proposition 3.8. The cocycleQ2; € (TotC)? represents a cohomology class in
H?(X,C) ¥ C, which depends on the mappirfg

Remark 3.9.It might happen that the cohomology class;] = 0 for some specific
mapping(s)f.
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4. Polyakov’s Action in Higher Genus

4.1. Afterthe algebraic and topological preparations of Sect. 3, here we finally define the
Polyakov action functional and prove Theorems A, B, C. Ket- I'\H be a Riemann
surface of genug > 1 andf be a quasi-conformal mapping such that f oo f~1

is a Fuchsian or quasi-Fuchsian group isomorphiE {see the introduction and 3.2.2

for details). Using the pairing betwe€?* andK, ., we set

2iS[f1=(Qy, 2)
= (WIf], F) = (OLf1, L) + (BLf], V)

= '/Fw[f] - Zf‘/b %[f]:é/ai b L]

g (4.2)
+3 <9m,@[f]<ai<o» — 05,0, LA1B:0)) + @%Wi[fwo»)
i=1

g

=376 Al 10,0)).
i=1

Proof of Theorem Alt follows at once from the constructions in Sect. 3. First, the value

of S[f], for any givenf, depends only on the classes defined@fyandX’ and not on the
explicit cocycles representing them. Indeed, because of the property (3.3) of the pairing
(', ), shifting eitherQ; or X by (co)boundaries does not alter the value given in (4.1).
Furthermore, by virtue of Lemma 3.6 and the above invariance, the &itfjroes not
depend on either the choice of the markinglpfor on the choice of the fundamental
domainF'. Finally, it follows from Propositions 3.4 and 3.8, which identify the (total)
homology of the complexels, . andC*:* with that of the surfaceX, that the action

S[f] comes from the pairing

H?(X,C) x Hy(X,Z) — C.
O

Remark 4.1.Since the action results from a pairing in homology, we write it as

1
stressing its dependence on the (co)homology classes only.

4.2. Here we discuss the variational properties of the action functional (4.1) and prove
Theorem B. As it was mentioned in the introduction, there are two versions of the
variational problem foiS[ f]. In the first one, the free-end variation, we consigdeo

be the independent variable, so that the target Fuchsian (or quasi-Fuchsian) gsoup
determined by: through the solution of the Beltrami equation. In the second case, the
fixed-end variation, we fix the target Fuchsian (or quasi-Fuchsian) drdogether with

the isomorphisni® — I" and consider the s&@C(T", I') of all smooth quasi-conformal
mappingsf that intertwine betweeh andT".
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In the first case, since the set of Beltrami coefficientsIfas the interior of a ball
of radius 1 (with respect to thig || norm) in the linear spacB(I') of all Beltrami
differentials forT", the variationdu. belongs ta3(I).

In the second case, since the target Fuchsian (or quasi-Fuchsian)iofixed, it
follows from the equivariance property (1.7) thiet/ f, is (—1, 0)-tensor forT", that is

ﬁoy:gfy/ forally € T

[ I
One can expresyf/ f, in terms of a vector field oX as follows. LeiG, be the group of
all orientation preserving diffeomorphismsliffixing I' and homotopic to the identity.
Any path g’ in Go connected to the identity defines a pgth= f o ¢* in QC(I',T’)
connected tg € QC(T", I), a deformation of the mappinf Setting

d

_ @ t
o = G| I

and definingy = v* 9, + v* 95 as the vector field generating the flow- ¢*, we get

of —
- =vt+ 2 v” )
e
whereu = fz/f. is the Beltrami coefficient foF corresponding tg'.
Note that in the first case the corresponding variaigti f. is not necessarily a
(—1, 0)-tensor forT", since the target group “floats” under a generic variation of
(variation with free end). Specifically,

of 1 _46f 1 (6&)
— 0 _ = — 4+ — - o s 43
LY TR TR\ / (4:3)
for all v € T'. Objects oriHl with such tranformation property are pull-backs under the
map f of non-holomorphic Eichler integrals of orderl for the groupl’. By defini-

tion [21], the spacEg1 of these Eichler integrals consists of smooth functiéro H
such that

go7 5 =84, (4.9)

forall 5 e T, whereps is a 1-cocycle off” with coefficients in the linear space of
polynomialsP of order< 2 with the action

P (3YYPPoq ™

Clearly the pull-back& o f)/f. of the Eichler integrat has the trasformation prop-
erty (4.3).
In both cases the variations ¢fandy are related by the same equation

5 -
M<ﬁ>5%

where M = 9 — 0 + u, is the differential operator introduced in Sect. 2. It has
the remarkable property of mapping 1, 0)-tensors fol", and even objects of more
complicated type such as pull-backs of Eichler integrals, intt, ()-tensors forT".
There are other differentials operators with similar properties, collected in the following
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Lemma4.2. () The operatord = 9%+2790+T, and M = o— ud+pu,, whereT'is a
quadratic differential fol” andy is Beltrami differential fol", map(—1, 0)-tensors
for I' into quadratic and Beltrami differentials fdr, respectively.

(i) The operators” and M from part (i) map pull-backs by the mappirfyof Eich-
ler integrals of order—1 for T" into quadratic and Beltrami differentials fdr,
respectively.

(i) If fis mapping of intertwiningl" and[", thenT” = {f, z} isaquadratic differential
for T.

Proof. Part (i) is well-known (see, e.g. [17]) and the statements can be easily verified. In
particular, setting” = 0 we get thaji. .. is a (2 1)-tensor forl", which is also a known
result (see, e.g. [21]).

In order to prove part (ii), note that for a holomorphic functjpaon H we have

o
(" L) =zenes.
[
which shows that the additional terms in the transformation law (4.3) belong to the kernel
of 7. Similarly, (2.11) shows that these terms belong to the kekieds well.
Part (iii) is another classical result, which can be easily verified as well.

4.2.1. Proof of Theorem BFor concreteness, we first consider variations with respect

to i, though, as we shall see, the actual argument works for both kinds of variations.
The proof requires climbing the “ladder” in the double complx®, together with

the computation of the variation af] f]. Sincew] f] is a local functional off, we can

just use the computation already done in genus zero so that, according to formula (2.5),

w=a—dn, (4.5)

wherea = —2T §ud 2z A d z and the explicit expression for the 1-formis not needed.
(In order to simplify notations, we temporarily drop the dependencg dmom the
notation.) As it follows from Lemma 4.2, the 2-formon H is a (1 1)-tensor forT,
therefore it is closed with respect to the total differential, Da.= 0.

Next observe thaDdé2 = §DQ2 = 0, thereforeD(62 — a) = 0. We want to show
thatdQ2 — a is in fact D-exact up to a term whose contribution vanishes after pairing
with X

To this end, let us write

60 =y,

wherey has degree (@) in the total complex. This is possible, since, as it is shown in
the appendix, the higher cohomology bfwith coefficients in the de Rham complex
vanishes. The equatiand2 = 0 gives us the two relations

déO =666, ddb=ddw, (4.6)
of which the first one implies that
60 =dx + oA,

where, again, the vanishing &f¢(T", A?) for ¢ > 0 has been used. Plugging this relation
into the second one in (4.6), yields

00w =ddA.
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Notice that this time we can at most conclude that— d \ is a I'-invariant form,
since HO(I", A?) precisely gives the invariaptforms (cf. the appendix). We write this
invariant form as: + b, for some (20) invariant element, so that

ow=dA+a+b

and, using (4.5),
b=— d(77 + A) )

i.e. bis I'-invariant and exact. Putting all together, we obtain

0Q = 6w — 60 — 660
=a—dn—dyxy—0X—9Jx
=a+b+D\—y),

which, after evaluation again&i, reduces to

<6S2,2):/Fa,

as wanted (the integral éfover F' is obviously zero).

In order to complete the proof, notice that the variation.§f] always has the
form (4.5), independently of whether either variapler f is varied. In the latter case,
the variationd f/ f. is a (—1, 0)-tensor forT", so that we can use (4.5) and the relation
o = M(df/f.) together with Lemma 2.3. O

Remark 4.3.Note thatthe argument presented in the proof of Theorem B is quite general.
It applies to any functional defined by an evaluation of a cocycle ifCfaiver a cycle

X, provided that the cocycle is the extension of a 2-fornHwith the property that its
variation is a sum of> andd-exact terms.

4.2.2. As it was mentioned in the introduction, it follows from Theorem B that
¢ S[f]/24r, considered as a functional pf= fz/f., solves Eq. (1.2), no matter what
kind of deformation we are considering, be it Fuchsian or quasi-Fuchsian. Thus there are
at least two possible solutions of (1.2) on a Riemann surface of genus higher than one.
In order to clearly distinguish the two cases, let us adopt for a moment the customary
notation in the theory of quasi-conformal mappings [1], so fiaandl'* (respectively
f, andT’,) stand for the Fuchsian (respectively, quasi-Fuchsian) deformatibn of

There is a simple relationship between the variationS[gf,] and S[ f*]. First of
all, observe that the mapping:= f, o (f*)~! : H — f,(H) is conformal (note that
fH(H) = H). Indeed, it follows from the Beltrami equation that

dg _ o (8(#)—1 a(f“)‘1> _
= +u =0,
¢ 0z ¢ a¢

where( = f#(z, z) is the new complex coordinate &h Moreover, the map intertwines
r'* andr",, thus it descends to a biholomorphic map

g: Xt =TM\H — T,\f.(H) =X,

showing that the Riemann surfack$ and.X,, are conformally equivalent. Furthermore,

we have
Tu(2) = {fu, 2} = {g,C} o f* (FL)° + TH(2),
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whereT#(z) = { f#, z}. Thus the difference
_0S[£,]  8S[fY]
o ou

is just the pull-back undef* of the holomorphic quadratic differential obtained by
taking the Schwarzian derivative gfwith respect to the new complex coordingteOf
course, the situation is completely symmetric under the exchangieanfd f*.

One can reach the same conclusion proceeding along a different line (cf. [32]).
Namely, since bott$[ f#] and S[ f,,] satisfy (1.2), satisfies the equation

@—pd—2p)Q=0

which, using the Cauchy-Riemann operator
6 _02(0 O
ac _ac\oz oz
(@) _
%(72) =0

showing thatQ is indeed the pull-back of a holomorphic quadratic differential with
respect to the complex coordinate

Q

can be written as

Remark 4.4.The above argument actually shows that homogeneous solutions to the
equation (1.2) onX are pull-backs under the mappirfg (or f,,) of the holomorphic
quadratic differentials on the “target” Riemann surfacé. According to the Riemann-
Roch theorem, this space ig 3 3-dimensional; therefore, the universal CWI (1.2) does
not completely determine the generating functional for the stress-energy tensor in the
higher genus case. As we mentioned in the introduction, additional information should
be provided by the particular CFT.

4.2.3. According to Theorem B, the variation of the action with respect to the fnap
yields the classical equation of motion

Waze = 0. (4.7)

Here we compute the dimension of the space of solutions of (4.7). It was observed in the

introduction that determining the critical set8ff] in QC([, ") out of (4.7) seems to

be a very difficult problem. However, the space of solutions to (4.7) is quite interesting

since, as we show below, it contains the subspace of harmonic Beltrami differentials.
First, recall the definition of the so-called Maass operators (see, e.g. [13}), Fer

Z, denote byAR! = AN'(H)T = AE'(X) the space of-invariant {, [)-forms onlH;

by convention,dz)*, for k negative, means)(9z)~*. Define

Dyt AR — AR

by
Dyi=y *0doy®,

whered = 9/0z. Itis easy to verify that

92=D110Dg10D_ 11, (4.8)
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which once again shows that the operatdmaps Beltrami differentials into the (2)-
tensors fo". Furthermore, a Beltrami differentiale A" is called Bers harmonic if
it is harmonic with respect to th-Laplacian of the Poincérmetric onl"\H, acting on
(—1,1)-forms. It can be shown that

v=y2q,
whereq € Aﬁ’o is a holomorphic quadratic differential. It follows from the Riemann-

Roch theorem that Bers harmonic Beltrami differentials form @a+{3)-dimensional
complex vector space and play an important role in the Teidlemtheory [1, 16].

Proposition 4.5. The space of solutions of Eq. (4.7) has complex dimemkjon 3:
dimg Ker,-11(92) = 49 — 3,
r
and contains th8¢g—3dimensional vector space of Bers harmonic Beltrami differentials.

Proof. Using (4.8), we start by observing that the kernelidf,, coincides with
the space of harmonic Beltrami differentials. Indeeds Ker(D_1 1) if and only if
d(y—?v) = 0, which impliesv = 4?2 ¢, for ¢ a holomorphic quadratic differential, since
y~—2vis a (Q 2)-form.

Furthermore, Ketl1 1) N Im(Do 1) = {0}. Indeed, an element in K&l 1) is nec-
essarily a multiple of the (1)-form y~2. If it is non zero, then it cannot belong to
Im(Do 1) = Im 9, sincey 2 represents a conomology classTH.

Next, it is clear that Keto 1) is complex anti-isomorphic to the linear space of
Abelian differentials fotX . Finally, the mapD_1 1 is onto: its image is the entire space
of (0, 1)-differentials. Namely, the operator adjoint@a ; ; with respectto the Hermitian
scalar product om{f’l induced by the Poincametricy =2 is D* ; ; = —0 o y?, which
has zero kernel sincg > 1. Thus any element in Kefy 1) is théD,l,l—image of an
element inA; !, orthogonal to the subspace of harmonic Beltrami differentials, and it
also belongs to the kernel 6. Counting 4 — 3 = 3g — 3+¢ proves the claim. [

Remark 4.6.As in the genus zero case, the equation of motion (4.7) is equivalent to the
holomorphicity property of" = { f, z} with respect to the new complex structure induced
by f. Namely, whenu satisfies (4.7), the corresponding (1.2) becomes homogeneous so
that, according to 4.2.2, we have

T —_
o ((@02) =0 4.9)

for the stress-energy tensor in the new coordinategg This condition is well defined
on the surfaceX as well as on the deformed Riemann surfagg (H).

4.2.4. Here we briefly comment on the computation of the second variation. It follows
from Lemma 4.2 that the differential operators used in the genus zero computation are
tensorial; therefore, using Theorem B and the fact that the problem is local, we can just
repeat the computations in 2.3 in order to get the

Proposition 4.7. The Hessian of the Polyakov action (4.1) is given by the genus zero
formula

#5110 020) = 2 [ 2 (50 M) (‘iﬁf ) @
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4.3. We now analyze how$| f] relates to the functiondl’[] defined by (1.10), and
prove Theorem C.

Fort € [0, 1], let u* be a homotopy in the space of Beltrami differentials connecting
0 to i, and letf? be the solution of the Beltrami equation corresponding’td-or the
sake of convenience, let us rewrite (1.10) here:

Wil = é /:(/F T it dzz) dt. (4.10)

The integration in (4.10) is extended ¥ but, according to Lemma 4.2, the integrand
is a (1, 1)-tensor forl", hence the integral descendsXo

Proof of Theorem Qe want to proceed in a fashion similar to the proof of Theorem B.
Our construction of[ f] applied tof* producesvt, Q' andS[ f*] for anyt € [0, 1].
We can make use of formula (2.5) appliedits d/dt:

= 2T  dz AdZ —dn(fh ff) = a' —dn',

where, as beforea’ = 0. On the other hancDQt =0, sinceDQ’ = 0 for anyt, and
therefore the same arguments as in the proof of Theorem B lead us to conclude that

<s’zt,2>:/Fat.

Integrating int from 0 to 1 we get that?V[n] = (¢/24r)S[f], which together with
Theorem C proves patrt (i).

First statement of part (ii) follows from the fact that it is well-known [1] that the
quasi-Fuchsian deformatigh= f, depends holomorphically gn Finally, if f = f#*is
a Fuchsian deformation with harmonic Beltrami differentia¢ v2¢, then the Ahlfors
lemma (see, e.g., [33]) states

ofH 1
oc |5 27
Therefore, choosing a linear homotopit) = tu, we have the following simple com-
putation
0PWep] 0 fet“ 5
°f = t
O0ede | 127r/ / =0 pdzd
247r tdt/ qud®z
e [
O

Remark 4.8.Theorem C specifies thedependence for two natural solutions o1 1],

defined by quasi-Fuchsian and Fuchsian deformations. Inthe former case the correspond-
ing functional is holomorphic i, as a generating functional should be, while in the
latter case it is not. Introducing the Weil-Petersson inner product in the space of Bers
harmonic Beltrami differentials by
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(va NZ)WP = /F /'Ll,ljZ yiz d2 Z,

the latter statement takes a quantative form

ALl LY T
dede |,  dgr HIwe

that once again characterizes the Weil-Petersson metric as a “holomorphic anomaly”.
Finally, for arbitrary Beltrami differential one should replagedby Py in the above
formula, whereP stands for the orthogonal projection (with respect to the Weil-Petersson
metric) onto the space of harmonic Beltrami differentials.

4.4. Here we compute the Hessian of the action functidiabs a functional ofx.

For this end we need to extend the linear mapphig: A-° — A~ to the space

of pull-backs by the mapping of Eichler integrals of order1 for I'. This mapping

has no kernel on the subspace of normalized Eichler integrals (i.e. vanishing ab)0

and, according to Bers, it is onto (see [21]). We denote, slightly abusing the notations,
the inverse of thus extended mapping by M.

Proposition 4.9. The second variation of the functiond[ ] is given by
S W(Gan, 620 = 15 [ B (T 0 M) Gar) .
T JF

where, according to Lemma 4.2, the operafos M~ maps Beltrami differentials fdr
into quadratic differentials. The Hessianf[ ] at the pointu is given by the operator
PoM™1L

Proof. Itis the same as the genus zero computations using Lemma 4.2. Note that at the
critical pointT'(z) = 0, so thatZ = 9°. O

5. Fiber Spaces over Teichniller Space. Discussion and Conclusions

In the preceding sections we have defined Polyakov’s action for the chiral sector in
the induced gravity on a Riemann surfakeof genusg > 1 and explored some of its
properties. We have also pointed out the possible interpretatidf pf = (¢/24x) S[ f]
as the universal part of the generating functional for the correlation functions of the
stress-energy tensor for a CFT &n

However, the most compelling interestliiA[u] (or S[f]) stems in its relation with
the geometry of the various fiber spaces over Teidlen space. We want to elaborate
more on this point.

5.1. Recall that the Teichiiler spaceZ (X) of the Riemann surfac& of genusyy > 1

is naturally realized as the quotient of the open unit #{IK) (with respect to the
L= norm) in the Banach space of Beltrami differentials ¥n= I'\H by the group

of quasi-conformal self-mappings &f pointwise fixing the groug’. If one replaces
B(X) by its subsefP(X) consisting of smooth Beltrami differentials and considers the
identity componengo(X) of the group7 (X) of orientation preserving diffeomorphisms
of X (elements ingo(X) point-wise fixI" while acting onH), then one gets Earle and
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Eells [11] fiber space : P(X) — 7 (X) over the Teichriller space. It is a smooth (in
the Freckt topology) principalGo(X)-bundle overZ (X). The group action ofP(X)
can be written ag = u(f) — p9 = u(f o g), for g € Go(X) [11], wheref = f+is a
Fuchsian deformation associated withExplicitly, the above action is [1]:

gz n—plg™
== °9
9= \1—pp(g=)
Consider now the tangent bundle exact sequence

0 — Ty P(X)—=TP(X)r*(TT(X)) — 0

determined by the Earle-Eells fibration. (Observe that sSICE) is a ball in the vector
spaceA;l’1 of all smooth Beltrami differentials, the tangent space to it at any given point
w is canonically identified withA;l’l.) According to the description of the fixed-end
variation given in 4.2, the deformatioff = f o g¢¢, for t — g* € Go(X), results in a
vertical curvet — p' above the point(1) € 7(X). Thus the corresponding variation
op = fu lies in the vertical tangent spa@g P(X) at pointy, which is isomorphic to
Im(M), whereM = 9 — pd+p. : Ar % — A Next, the tangent spade P(X ) can

also be identified with the space of smobtBeltrami differentials; an easy computation
proves the following (well-known) lemma.

Lemma 5.1. For anyr € A" the correspondence

fz v ) _1
v | = of
(fz 1- |M‘2
mapsA- ! isomorphically ontoAz™*. Under this mapM becomesd,(,, the o-
operator relative to the new complex structure on the Riemann suadefined by

.
This implies at once that the kernel 1 is trivial, and therefore the correspondence

v =070, + 1705 — M + u?)

explicitly gives the injection in the tangent bundle sequence above. Furthermore, it
realizesTyP(X) (and its quotient byjo(X)) as a bundle of Lie algebras, as usual in
a principal fibration [4]. Here the Lie algebra in question is the Lie algebra Vect(X) of
smooth vector fields o, which can be identified — as a real vector space — jth®.

With these definitions at hand, the following reinterpretation of the formulas in the
statement of Theorem B becomes obvious.

Proposition 5.2. For any smooth functionaF : P(X) — C,

1. the open-end variatiodF computes its total differential gR(X);
2. the fixed-end variation computes its vertical differential.

In particular, for the action functional?’,

C

AW, = 5T € T;P(X).
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Remark 5.3.The second pointin the proposition can be verified by the following explicit
computation, that uses Theorems B, C and Lemma 2.3.

oW c of c

_ 5f
57G) - 1zr oty d Z"E/FDT(”)ZO' :

- _¢ of\ o
= 1on FT(Z)M (fz) d-z.

Remark 5.4.The description of the vertical bundle as the imageMdfimmediately
implies that
Tr(yT(X) = A/ IM(M)

so that we get the well-known result [11]
TrT(X) ¥ HY (X", Txn) ¥ HY(X", Ox1),
where the last group gives the Kodaira-Spencer infinitesimal deformat®gs. i€ the

holomorphic tangent sheaf to the Riemann surf&¢e)

5.2. Itis fundamental to investigate how the functidn : P(X) — C relates to the
geometry of the bundle : P(X) — 7(X). A long but straightforward computation
using the definition (1.10) dfi” proves

Lemma 5.5. There exists : P(X) x Go(X) — C such that
W] = Wlp]+ Alp, g]. (5.1)

The functionald depends only on the poift, g) and is local ing and i9; in particular,
itis independent of any possible choice of the solution of the Beltrami equation involved
in the definition ofiV.

It trivially follows from (5.1) that the functionaH satisfies the cocycle identity:

Alp, gh] = A[p?, Rl + Alp, g] -

Next, according to [30], the functiondl[ ] = exp(—W[u]) is to be interpreted as a
conformal block for a CFT defined al. Thus it is more convenient to work with the
exponential version of (5.1). Namely, defining

Clp, g1 = exp(=Alp, g]) ,
we get
V[l = Clp, g1 Wlpl - (5.2)
The cocycle condition takes the form

Clu, gh] = Clp?, h] Clp, 9],

which defines a 1-cocycle @i(X) with values in the group of non vanishing complex
valued functions orP(X). We denote by(] the class ofC in the cohomology group
HYGo(X), C*(P(X))).

Proposition 5.6. There is an injective map of the groip(Go(X), C*(P(X))) into the
group of isomorphism classes of line bundles o¥€X). The line bundleL;c; over
T(X), defined byC] is, in particular, holomorphic.
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Proof. The existence of a map
0 — HY(Go(X), C*(P(X))) — HXAT(X),Z)

is an application of the well-known concept@fvector bundle as presented in [5, 28].
We define an action bgp(X) on the trivial line bundle. = P(X) x C by

(1, 2) = (19, Clp, g]2) - (5.3)

The action is free since it is so on the first factor, hehce E/QO(X) is a line bundle
over7 (X). As it is easily checked, cohomologous cocycles yield isomorphic bundles,
and soLcy is trivial if and only if [C] is trivial.

Next, observe tha’[u, g] can be defined using the quasi-Fuchsian prescription,
which, according to Theorem C, yields a holomorplic Moreover,.9 is holomorphic
in u, as it follows from the explicit expression. Thus| -, ¢] is holomorphic and so is
the action5.3. O

Remark 5.7.The construction of the line bundlg is well known from works on
anomalies [3, 10, 12]. An explicit construction of the MEP(Go(X), C*(P(X))) —
H?(7 (X), Z) usingCech cohomology appears in [12].

Itfollows from general arguments (cf. [28]) that sectionégf; can be identified with the
Go(X)-invariant sections of,, namely with those function® : P(X) — C satisfying

O[] = Clp, g] @[y] -

Since the conformal block = exp(—W) does not vanish, the foregoing proves the
following

Proposition 5.8. The conformal blockr descends to a non-vanishing sectiorlgfy,
thereby providing a trivializing isomorphisiyc; — 7 (X) x C.

Observe (cf. [35]) that the line bundlg; is holomorphically trivial due to a general
property of the Teichiiller space being a contractible domain of holomorphy [25]. Our
construction provides an instance of this general fact, as well as an explicit trivializing
map. Also note that, due to the universal nature of the cocydke ratio of two different
conformal blocks, in accordance with [30],ds(X)-invariant and, therefore, descends
to a non-vanishing function on the Teickilter space7 (X).

5.3. The preceding observations bring in several additional questions concerning the ge-
ometrical significance of exp(IW[]). For instance, we can define the trivial connection
on the trivial line bundld. on P(X):

Vo = wd(v o)
=do— (v lduw)o.

This connection is easily verified to Igg(X)-invariant, hence it descends orfig. It
follows from Proposition 5.2 and Theorem B that the connection form coincides with
dW =cT/12x.

This is very reminiscent of Friedan and Shenker's modular geometry program for
CFT [14], where the vacuum expectation value of the stress-energy tensor is interpreted
as a connection on a line bundle over the moduli space. As a further development, this
suggests studying the action of the full groG@X) on the presented construction. As
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it is well known [11], the quotient oP(X)/G(X) (the action being the same as in the
previous case) is precisely the moduli space of compact Riemann surfaces of genus
g > 1. All the local formulas will stay the same, while the action of the modular group
G(X)/Go(X) on T(X) will introduce the topological “twisting”. All of this should
be fundamental for the differential-geometrical realization of Friedan and Shenker’s
program. In this respect it is important, as we proved in the paper, that the functional
W] is independent of the marking of a Riemann surface

Another direction, more directly related to the Earle-Eells fibration consists in finding
the geometric interpretation of the critical poirfffs= 0 and “vertical critical” points
12z, = 0 of the functionalV [ p].

Finally, the question of the relation &[] with the full induced gravity action on
X is also very important. Recall the genus zero factorization [30]

[ ratR= Wi W@ Ko,
where the terniK|[¢, u, 1] is further decomposed as a sum

K[@%lﬂ = SL[¢7HJ3 m + KBK[IU‘7m

of the Belavin-Knizhnik-like anomaly term plus the Liouville action in the background
|dz + ud z]2. After having properly defined’[.] on X, it is natural to ask whether
such a decomposition holds in higher genus as well. We observe that the general
(co)homological techniques applied in this paper can also be used to give a mathe-
matically rigorous construction of the Liouville action (in various backgrounds) in the
form of a “bulk” term plus boundary and vertex corrections, as in the spirit of [29, 33].

A construction of this kind should provide a meaning also to the full agfiM‘lR in

terms of a Liouville action in the “target” complex structure, provided one can actually
define Kgk in higher genus as well. A full understanding of the geometrical properties
of W[u] and Kgk and their exponentials would be relevant in order to put the Geometric
Quantization approach of ref. [30] and, more generally, the three-dimensional approach
to two-dimensional gravity on a more conventional mathematical basis. Finally, similar
construction can be carried out for defining the WZW functional on the higher genus
Riemann surfaces. We are planning to address these questions in the next publications.

Appendix A. Some Facts from Homological Algebra

We give a brief account on the use of double complexes as applied to our situation. We
shall mainly focus on homology and just indicate the required modifications to discuss
the cohomological counterpart of the various statements. For a full account cf. any book
on homological algebra, like, for instance, [23].

A.1. The framework we put ourselves in is sufficiently simple that one can in fact avoid
the use of spectral sequences altogether in the proof of Lemmas 3.2 and 3.3, provided
one takes into account a few simple facts from homological algebra. The key pointis that
the various double complexes we are interested in have trivial (co)homology in higher
degrees with respect to either the first or second differentials, so the arguments can be
given in general, without referring to specific examples.

Let K, . @ double complex with differential®’ : K, , — K,_1,andd” : K, , —
Kp,q—1, and total differentiab|, =0’ +(—1)’ 9". According to our discussion, let us

make the assumption that
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9" _ Cp q:0
H, (KP")_{O ¢>0.

ThenC, € @C,, inherits a differentidi 0 : C,, — C,,_1 from the first differentiab’ in
the double complex, and since
e ﬁprq_lﬁKp,qﬁKpﬂqﬂﬁ e

is exact exceptin degree zero, we can “augmegl inserting the projection : K, o —
C), to obtain the exact sequence

0+—Co — Kqa-

Proposition A.1.
H.(TotK) ¥ H.(C).

Proof. This is a routine check of the definitions. Suppese C, is closed, i.edc = 0.
This means that a chaiy € K, o exists such that(9’cp) = 0, bute(d’cp) is the class
represented b§’ ¢y, since we clearly haw@’ 9’ ¢y = 0. So, this class is zero, and therefore
we have

8/60 = 8”c1 for c1 € Kp_171.

Now, 8" (0'¢1) = 9'(9"c1) = 8’9’ ¢o = 0, and since thé”-homology ofK, . is concen-
trated only in dimension zero,@ € K,_, 2 must exist such that

8101 = 8//62 s

and so on. The procedure stops atgfestep. Thus the chain

p i-1
C=cy+ Z (—1)Zk:0 (p_k)ci

=1
is a cycle in ToK, that is,0C = 0.

Conversely, sSUppos€ = co + >, (fl)Z;ol(p’k)ci € TotK is 0-closed. Then
¢ = e(co) is a degre@ cycle inC,. Indeed, in degreep(— 1,0) we haved’co = 0" ¢;
and

(0 co) =€(0"c1) =0,

since the augmentation is exact.
That the cycle: € (), is a boundary if and only i€’ € TotK is a boundary can be
proven along the same lines. This completes the argument]

A.2. Recall from Sect. 3 the various double complexes we used. In partisylar=
S. ®zr B, is the double complex obtained tensoring the singular chain complex on
Xo ¥ H with the “bar” complex

1’ 1’ 1" 1
0 Byp—B, & ... B, ...

(A.1)

9

which is exact except in degree zero. Its definition has been given in the main text. Being
Bo al’-module on the generator [ ], introducing the augmentatioBg — Z, ([ ]) = 1,
we can rewrite it as the exact sequence

1 The use of the same symbol to denote the differentiafamd TotK should not generate any confusion.
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0 7By B ... g 2. (A.2)

The above exact sequence is usually referred to as a “resolution” of the integers. Since
everyB, is afreeI"-module, the sequence is a free resolution.

The singular chain comple®, = S.(X() needs little description. Sindé acts on
the space$S, acquires d-module structure simply by translating around the chains.
That this actually is a complex dfee I'-modules is proven in [23] or [9]. A choice
of free generators is to take those chains whose first vertex lies in a suitably chosen
fundamental domain iiX. The differential, which we called’ in the main text, is just
the usual boundary homomorphism.

The homology ofl” with coefficients in anyi'-module M is by definition the ho-
mology of the complex( @z B,. (Any other resolution oZ would be adequate.) In
fact, tensor product does not preserve exactness in general. As a matter of terminology,
a moduleM such that any exact sequence remains exact after tensoring with it, is called
flat. Therefore, all the higher homology groupsIofwith coefficient in a flat module
will be zero. A freel’-module is in particular flat, as it is very easy to see. So, in our
case, we have

S Z q=0
Hq(F,Sp) = {OP ®ZF Z> 0 )

whereZ is considered as a trivii-module. Moreover, note th&, ®zrZ = S,(Xo)Qzr
Z = Sp(X) the space of singular chains on the surface. Indeedsifny chain onXy
and- is any group element, we havey® 1 =c® v -1 =c® 1, and therefore ® 1
can be identified with a singular chain on the surface, as claimed.
After these preparations, we can exploit the exact complex (A.2) to build the aug-
mented double complex id ®e

0

S. Qzr Z So Qzr Bo (A3)

with exact rows. According to the foregoing, the leftmost column in (A.3) is to be
identified with the singular chain complex on the surface. (Or, more generally, of the
guotient space.)

The complex (A.3) satisfies the hypotheses of Proposition (A.1), and since the group
homology is thed”’-homology of the double complex, we conclude thR{TotK) =
H,(X,Z) thereby proving one half of Lemma 3.2.

In order to prove the other half, let us observe that actually all the columns in (A.3),
except the first one, are exadfy = H being a contractible space. Indeed, the complex
S, carries no homology except in degree zero, and we can “augment” it as well to obtain
another resolution of the integers:

/ / / /
0 75 8pl g ... g, P .,

Now the situation is completely symmetric and we can just “transpose” the above con-
structions to build the augmented complex
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Se @zr Be
e®id

Y

Z @zr Be

0

and apply Proposition A.1 to it to show that (TotK) = H, (T, Z).

A.3. The cohomological picture has a very similar structure. The cohomolody of
with coefficients inM is by definition the homology of the complex Hep(B,, M).
(Notice that Hom is contravariant in the first variable, thus it reverses the arrows.) We
will be in position to apply the analogue of Proposition A.1 with the arrows reversed to
the complexC*:* = Hom(B,, A®) provided we show that/4(I", AP) = 0 forq > 0, that

is, Hom(- , AP) must preserve exactness, so that the higher cohomology groups are zero.
An injective module M is by definition aI'-module such that Hom( M) preserves
exactness, hence the higher cohomology groupswith coefficients into an injective

are zero. Thus we have to show ti¢t is injective as d-module. In fact, more can

be done, namely it can be shown tihdt = Homy(ZI', AZ(X)), where AZ(X) is the
vector space of (complex valued) differential forms on the Riemann suXacehe
(easy) proof of this assertion requires the construction of an equivariant partition of
unity onH, see [21]. The®\? has no higher cohomology since

Homyr(B., AP) = Homyr(B., Homy (ZT7, AL (X))
=~ Homy(B., AZ(X)),

and the last complex has no cohomology, except in degree zero. Thus we have

p -
HO(R, AY) = {§C<X> =0

and applying Proposition A.1 to the double comp&%® we can prove that
H*(TotC) ¥ H*(X,C).

To prove the rest of Lemma 3.3 we need only use the contractibilifj,c¥ H, so that
A* has no cohomology, and apply Proposition A.1 to the transposed double complex.
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Note added in proof

After the work described in thos paper has been completed, the articles [36] and [37],
where similar double complexes for group cohomology are also used, have been brought
to our attention.
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